Abstract
Demand-responsive transport (DRT) systems, where users generate requests for transportation from a pickup point to a delivery point, are expected to increase in usage dramatically as the inconvenience of privately-owned cars in metropolitan areas becomes excessive. However, despite the increasing role of DRT systems, there are very few rigorous results characterizing achievable performance (in terms, e.g., of stability conditions). In this paper, our aim is to bridge this gap for a rather general model of DRT systems, which takes the form of a generalized Dynamic Pickup and Delivery Problem. The key strategy is to develop analytical bounds for the optimal cost of the Euclidean Stacker Crane Problem (ESCP), which represents a general static model for DRT systems. By leveraging such bounds, we characterize a necessary and sufficient condition for the stability of DRT systems; the condition depends only on the workspace geometry, the stochastic distributions of pickup and delivery points, customers' arrival rate, and the number of vehicles. Our results exhibit some surprising features that are absent in traditional spatially-distributed queueing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.