Abstract

This paper deals with the reliability modelling and performance evaluation of three configurations arranged in series–parallel. Configuration I consist of six units in which four are on operational while two are on standby. Configuration II consist of seven units with three of the units are on standby while the remaining four are on operation. Configuration III comprises of two subsystems C and D with three unit in each subsystem with a unit on standby. Units in each configuration provide 25 MW. The failure and repair times are assumed to be exponentially distributed. Through the transition diagram, system of first-order linear differential difference equations are derived for each configuration and are used to obtain the corresponding explicit expressions of system availability and mean time to failure. Cost–benefit analysis is examined and compared among the configuration through numerical examples to determine the optimal configuration and it was found to be configuration I. This study is important to system designers and developers, maintenance personnel, engineers and plant management in the suitable in designing and analysis of maintenance policy and processes and also the assessment of performance and the safety of the systems in general during and after the burn-in period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.