Abstract


 
 
 This paper provides a lifecycle cost-benefit analysis of the use of Prognostics and Health Management (PHM) systems in future or present commercial aircraft. The approach considers individual aircraft component’s failure behavior, prognostic performance levels including prognostic errors, and condition-based maintenance (CBM) concepts. The proposed methodology is based on a discrete-event simulation for aircraft operation and maintenance and uses an optimization algorithm for the planning and scheduling of condition-based maintenance (CBM) tasks. In the study, a 150-seat short-/medium-range aircraft equipped with PHM and subject to a CBM program is analyzed. The simulation results are evaluated from an operational and economic perspective. The analysis results can support the derivation of technical and economic requirements for prognostic systems and CBM planning concepts.
 
 

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call