Abstract

Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed λY-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call