Abstract
In smart grid, several optimization techniques are developed for residential load scheduling purpose. Preliminary all the conventional techniques aimed at minimizing the electricity consumption cost. This paper mainly focuses on minimization of electricity cost and maximization of user comfort along with the reduction of peak power consumption. We develop a multi-residential load scheduling algorithm based on two heuristic optimization techniques: genetic algorithm and binary particle swarm optimization. The day-ahead pricing mechanism is used for this scheduling problem. The simulation results validate that the proposed model has achieved substantial savings in electricity bills with maximum user comfort. Moreover, results also show the reduction in peak power consumption. We analyzed that user comfort has significant effect on electricity consumption cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.