Abstract

In the spirit of the mounting interest in noncovalent interactions, the present study was conducted to scrutinize a special type that simultaneously involved both σ-hole and lone pair (lp) interactions with aromatic π-systems. Square-pyramidal pentavalent halogen-containing molecules, including X-Cl-F4, F-Y-F4, and F-I-X4 compounds (where X = F, Cl, Br, and I and Y = Cl, Br, and I) were employed as σ-hole/lp donors. On the other hand, benzene (BZN) and hexafluorobenzene (HFB) were chosen as electron-rich and electron-deficient aromatic π-systems, respectively. The investigation relied upon a variety of quantum chemical calculations that complement each other. The results showed that (i) the binding energy of the X-Y-F4···BZN complexes increased (i.e., more negative) as the Y atom had a larger magnitude of σ-hole, contrary to the pattern of X-Y-F4···HFB complexes; (ii) the interaction energies of X-Y-F4···BZN complexes were dominated by both dispersion and electrostatic contributions, while dispersive interactions dominated X-Y-F4···HFB complexes; and (iii) the X4 atoms in F-I-X4···π-system complexes governed the interaction energy pattern: the larger the X4 atoms were, the greater the interaction energies were, for the same π-system. The results had illuminating facets in regard to the rarely addressed cases of the σ-hole/lp contradictory scene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.