Abstract

The Internet of Things (IoT) became established during the last decade as an emerging technology with considerable potentialities and applicability. Its paradigm of everything connected together penetrated the real world, with smart devices located in several daily appliances. Such intelligent objects are able to communicate autonomously through already existing network infrastructures, thus generating a more concrete integration between real world and computer-based systems. On the downside, the great benefit carried by the IoT paradigm in our life brings simultaneously severe security issues, since the information exchanged among the objects frequently remains unprotected from malicious attackers. The paper at hand proposes COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel sentinel to protect smart environments from cyber threats. Our sentinel shields the IoT devices using multiple defensive rings, resulting in a more accurate and robust protection. Additionally, we discuss the current deployment of the sentinel on a commodity device (i.e., Raspberry Pi). Exhaustive experiments are conducted on the sentinel, demonstrating that it performs meticulously even in heavily stressing conditions. Each defensive layer is tested, reaching a remarkable performance, thus proving the applicability of COSMOS in a distributed and dynamic scenario such as IoT. With the aim of easing the enjoyment of the proposed sentinel, we further developed a friendly and ease-to-use COSMOS App, so that end-users can manage sentinel(s) directly using their own devices (e.g., smartphone).

Highlights

  • The Internet of Things (IoT) paradigm envisions a world where everything is connected together.That is, each everyday-life object will be reachable from the Internet with its own IP address through the already existing network infrastructures [1]

  • We present COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel approach to protect IoT nodes against cyber threats

  • The most interesting result showed in these graphs is that COSMOS is capable of handling gracefully the incoming stream of wireless traffic

Read more

Summary

Introduction

Each everyday-life object will be reachable from the Internet with its own IP address through the already existing network infrastructures [1]. The IoT devices may be located in home appliances, buildings, vehicles or monitoring infrastructures, and they might be remotely controlled by software services that allow them to be managed [2]. Under this paradigm, some vital domains will be enhanced, such as health-care [3], resulting in great economic and social benefits. The IoT potentialities soon attracted the attention of a vast audience, both from the academia and industry [4], exploding in a rapid growth which caused 6 billion devices connected in 2016 and foresees 21 billions of smart objects in 2020 [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call