Abstract

Velocity fields can be reconstructed at cosmological scales from their influence on the correlation between the cosmic microwave background and large-scale structure. Effects that induce such correlations include the kinetic Sunyaev Zel'dovich (kSZ) effect and the moving-lens effect, both of which will be measured to high precision with upcoming cosmology experiments. Galaxy measurements also provide a window into measuring velocities from the effect of redshift-space distortions (RSDs). The information that can be accessed from the kSZ or RSDs, however, is limited by astrophysical uncertainties and systematic effects, which may significantly reduce our ability to constrain cosmological parameters such as $f\sigma_8$. In this paper, we show how the large-scale transverse-velocity field, which can be reconstructed from measurements of the moving-lens effect, can be used to measure $f\sigma_8$ to high precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.