Abstract

We assume the cosmological dark sector to consist of pressureless matter and holographic dark energy with a cutoff length proportional to the Ricci scale. The requirement of separate energy-momentum conservation of the components is shown to establish a relation between the matter fraction and the (necessarily time-dependent) equation-of-state parameter of the dark energy. Focusing on intrinsically adiabatic pressure perturbations of the dark-energy component, the matter perturbations are found as linear combinations of the total energy-density perturbations of the cosmic medium and the relative (nonadiabatic) perturbations of the components. The resulting background dynamics is consistent with observations from supernovae of type Ia, baryonic acoustic oscillations and the differential age of old objects. The perturbation dynamics, on the other hand, is plagued by instabilities which excludes any phantom-type equation of state. The only stable configuration is singled out by a fixed relation between the present matter fraction ${\ensuremath{\Omega}}_{m0}$ and the present value ${\ensuremath{\omega}}_{0}$ of the equation-of-state parameter of the dark energy. However, this instability-avoiding configuration is only marginally consistent with the observationally preferred background values of the mentioned parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.