Abstract

We present an holographic model of the Dvali-Gabadadze-Porrati scenario with a Gauss-Bonnet term in the bulk. We concentrate on the solution that generalises the normal Dvali-Gabadadze-Porrati branch. It is well known that this branch cannot describe the late-time acceleration of the universe even with the inclusion of a Gauss-Bonnet term. Here, we show that this branch in the presence of a Gauss-Bonnet curvature effect and an holographic dark energy with the Hubble scale as the infra-red cutoff can describe the late-time acceleration of the universe. It is worthwhile to stress that such an energy density component cannot do the same job on the normal Dvali-Gabadadze-Porrati branch (without Gauss-Bonnet modifications) nor in a standard 4-dimensional relativistic model. The acceleration on the brane is also presented as being induced through an effective dark energy which corresponds to a balance between the holographic one and geometrical effects encoded through the Hubble parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.