Abstract

We explore the effects of dark matter and dark energy on the dynamical scaling properties of galaxy clusters. We investigate the cluster Faber-Jackson (FJ), Kormendy and Fundamental Plane (FP) relations between the mass, radius and velocity dispersion of cluster size halos in cosmological $N$-body simulations. The simulations span a wide range of cosmological parameters, representing open, flat and closed Universes. Independently of the cosmology, we find that the simulated clusters are close to a perfect virial state and do indeed define a Fundamental Plane. The fitted parameters of the FJ, Kormendy and FP relationships do not show any significant dependence on $\Omega_m$ and/or $\Omega_{\Lambda}$. The one outstanding effect is the influence of $\Omega_{m}$ on the thickness of the Fundamental Plane. Following the time evolution of our models, we find slight changes of FJ and Kormendy parameters in high $\Omega_m$ universe, along with a slight decrease of FP fitting parameters. We also see an initial increase of the FP thickness followed by a convergence to a nearly constant value. The epoch of convergence is later for higher values of $\Omega_m$ while the thickness remains constant in the low $\Omega_m$ $\Lambda$-models. We also find a continuous increase of the FP thickness in the Standard CDM (SCDM) cosmology. There is no evidence that these differences are due to the different power spectrum slope at cluster scales. From the point of view of the FP, there is little difference between clusters that quietly accreted their mass and those that underwent massive mergers. The principal effect of strong mergers is to change significantly the ratio of the half-mass radius $r_{half}$ to the harmonic mean radius $r_h$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.