Abstract

Horndeski derived a most general vector-tensor theory in which the vector field respects the gauge symmetry and the resulting dynamical equations are of second order. The action contains only one free parameter, $\lambda$, that determines the strength of the non-minimal coupling between the gauge field and gravity. We investigate the cosmological consequences of this action and discuss observational constraints. For $\lambda<0$ we identify singularities where the deceleration parameter diverges within a finite proper time. This effectively rules out any sensible cosmological application of the theory for a negative non-minimal coupling. We also find a range of parameter that gives a viable cosmology and study the phenomenology for this case. Observational constraints on the value of the coupling are rather weak since the interaction is higher-order in space-time curvature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.