Abstract

Cosmological time dilation is a fundamental phenomenon in an expanding universe, which stresses that both the duration and wavelength of the emitted light from a distant object at the redshift $z$ will be dilated by a factor of $1+z$ at the observer. By using a sample of 139 \emph{Swift} long GRBs with known redshift ($z\leq8.2$), we measure the observed duration ($T_{90}$) in the observed energy range between $140/(1+z)$ keV and $350/(1+z)$ keV, corresponding to a fixed energy range of 140-350 keV in the rest frame. We obtain a significant correlation between the duration and the factor $1+z$, i.e., $T_{\rm{90}}=10.5(1+z)^{0.94\pm0.26}$, which is well consistent with that expected from cosmological time dilation effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.