Abstract
The extensive catalog of $\gamma$-ray selected flat-spectrum radio quasars (FSRQs) produced by \emph{Fermi} during a four-year survey has generated considerable interest in determining their $\gamma$-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance $\Lambda$CDM and $R_{\rm h}=ct$ cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both $\Lambda$CDM and $R_{\rm h}=ct$. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour $R_{\rm h}=ct$ over $\Lambda$CDM. We suggest that such population studies, though featuring a strong evolution in redshift, may nonetheless be used as a valuable independent check of other model comparisons based solely on geometric considerations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.