Abstract
It has long been known that strings wound around incontractible cycles can play a vital role in cosmology. In particular, in a spacetime with toroidal spatial hypersurfaces, the dynamics of the winding modes may help yield three large spatial dimensions. However, toroidal compactifications are phenomenologically unrealistic. In this paper we therefore take a first step toward extending these cosmological considerations to $D$-dimensional toroidal orbifolds. We use numerical simulation to study the timescales over which "pseudo-wound" strings unwind on these orbifolds with trivial fundamental group. We show that pseudo-wound strings can persist for many ``Hubble times'' in some of these spaces, suggesting that they may affect the dynamics in the same way as genuinely wound strings. We also outline some possible extensions that include higher-dimensional wrapped branes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.