Abstract
In the cosmological scenario in $f\left( T\right) $ gravity, we find analytical solutions for an isotropic and homogeneous universe containing a dust fluid and radiation and for an empty anisotropic Bianchi I universe. The method that we apply is that of movable singularities of differential equations. For the isotropic universe, the solutions are expressed in terms of a Laurent expansion, while for the anisotropic universe we find a family of exact Kasner-like solutions in vacuum. Finally, we discuss when a nonlinear $f\left( T\right) $-gravity theory provides solutions for the teleparallel equivalence of general relativity and derive conditions for exact solutions of general relativity to solve the field equations of an $f(T)$ theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.