Abstract
We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully–Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.