Abstract

We present new results characterizing cosmological shocks within adaptive mesh refinement N-body/hydrodynamic simulations that are used to predict nonthermal components of large-scale structure. This represents the first study of shocks using adaptive mesh refinement. We propose a modified algorithm for finding shocks from those used on unigrid simulations that reduces the shock frequency of low Mach number shocks by a factor of ~3. We then apply our new technique to a large, (512 h−1 Mpc)3, cosmological volume and study the shock Mach number () distribution as a function of preshock temperature, density, and redshift. Because of the large volume of the simulation, we have superb statistics that result from having thousands of galaxy clusters. We find that the Mach number evolution can be interpreted as a method to visualize large-scale structure formation. Shocks with 20 generally follow accretion onto filaments and galaxy clusters, respectively. By applying results from nonlinear diffusive shock acceleration models using the first-order Fermi process, we calculate the amount of kinetic energy that is converted into cosmic-ray protons. The acceleration of cosmic-ray protons is large enough that in order to use galaxy clusters as cosmological probes, the dynamic response of the gas to the cosmic rays must be included in future numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call