Abstract

ABSTRACT The cosmic large-scale structure of our Universe is comprised of baryons and cold dark matter (CDM). Yet it is customary to treat these two components as a combined single-matter fluid with vanishing pressure, which is justified only for sufficiently large scales and late times. Here, we go beyond the single-fluid approximation and develop the perturbation theory for two gravitationally coupled fluids while still assuming vanishing pressure. We mostly focus on perturbative expansions in powers of D (or D+), the linear structure growth of matter in a ΛCDM Universe with cosmological constant Λ. We derive in particular (1) explicit recursion relations for the two fluid densities, (2) complementary all-order results in the Lagrangian-coordinates approach, as well as (3) the associated component wavefunctions in a semiclassical approach to cosmic large-scale structure. In our companion paper, we apply these new theoretical results to generate novel higher order initial conditions for cosmological hydrodynamical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.