Abstract
ABSTRACT The cosmic large-scale structure of our Universe is comprised of baryons and cold dark matter (CDM). Yet it is customary to treat these two components as a combined single-matter fluid with vanishing pressure, which is justified only for sufficiently large scales and late times. Here, we go beyond the single-fluid approximation and develop the perturbation theory for two gravitationally coupled fluids while still assuming vanishing pressure. We mostly focus on perturbative expansions in powers of D (or D+), the linear structure growth of matter in a ΛCDM Universe with cosmological constant Λ. We derive in particular (1) explicit recursion relations for the two fluid densities, (2) complementary all-order results in the Lagrangian-coordinates approach, as well as (3) the associated component wavefunctions in a semiclassical approach to cosmic large-scale structure. In our companion paper, we apply these new theoretical results to generate novel higher order initial conditions for cosmological hydrodynamical simulations.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.