Abstract

We aim at studying the effect of a cosmologically motivated gas infall law for the formation of a massive elliptical galaxy in order to understand its impact on the formation of the spheroids. We replace the empirical infall law of the model by Pipino & Matteucci with a cosmologically derived infall law for the formation of an elliptical galaxy. We constrast our predictions with observations. We also compare the obtained results with those of Pipino & Matteucci. We computed models with and without galactic winds: we found that models without wind predict a too large current SNIa rate. In particular, the cosmological model produces a current SNIa which is about ten times higher than the observed values. Moreover models without wind predict a large current SNII rate, too large even if compared with the recent GALEX data. The predicted SNII rate for the model with wind, on the other hand, is too low if compared with the star formation histories given by GALEX. Last but not least, the mean value for the [Mg/Fe] ratio in the dominant stellar population of the simulated galaxy, as predicted by the cosmological model, is too low if compared to observations. This is, a very important result indicating that the cosmological infall law is in contrast with the chemical evolution. A cosmologically derived infall law for an elliptical galaxy cannot reproduce all the chemical constraints given by the observations. The problem resides in the fact that the cosmologically derived infall law implies a slow gas accretion with consequent star formation rate active for a long period. In this situation low [Mg/Fe] ratios are produced for the dominant stellar population in a typical elliptical, at variance with observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.