Abstract
The quantum chromodynamics (QCD) axion may solve the strong CP problem and explain the dark matter (DM) abundance of our Universe. The axion was originally proposed to arise as the pseudo-Nambu-Goldstone boson of global U(1)PQ Peccei-Quinn (PQ) symmetry breaking, but axions also arise generically in string theory as zero modes of higher-dimensional gauge fields. In this work we show that string theory axions behave fundamentally differently from field theory axions in the early Universe. Field theory axions may form axion strings if the PQ phase transition takes place after inflation. In contrast, we show that string theory axions do not generically form axion strings. In special inflationary paradigms, such as D-brane inflation, string theory axion strings may form; however, their tension is parametrically larger than that of field theory axion strings. We then show that such QCD axion strings overproduce the DM abundance for all allowed QCD axion masses and are thus ruled out, except in scenarios with large warping. A loop-hole to this conclusion arises in the axiverse, where an axion string could be composed of multiple different axion mass eigenstates; a heavier eigenstate could collapse the network earlier, allowing for the QCD axion to produce the correct DM abundance and also generating observable gravitational wave signals. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.