Abstract

Inflation is now an accepted paradigm in standard cosmology, with its predictions consistent with observations of the cosmic microwave background. It lacks, however, a firm physical theory, with many possible theoretical origins beyond the simplest, canonical, slow-roll inflation, including Dirac-Born-Infeld inflation and k-inflation. We discuss how a hierarchy of Hubble flow parameters, extended to include the evolution of the inflationary sound speed, can be applied to compare a general, single field inflationary action with cosmological observational data. We show that it is important to calculate the precise scalar and tensor primordial power spectra by integrating the full flow and perturbation equations, since values of observables can deviate appreciably from those obtained using typical second-order Taylor expanded approximations in flow parameters. As part of this, we find that a commonly applied approximation for the tensor-to-scalar ratio, $r\ensuremath{\approx}16{c}_{s}ϵ$, becomes poor (deviating by as much as 50%) as ${c}_{s}$ deviates from 1 and hence the Taylor expansion including next-to-leading order contribution terms involving ${c}_{s}$ is required. By integrating the full flow equations, we use a Monte-Carlo-Markov-Chain approach to impose constraints on the parameter space of general single field inflation, and reconstruct the properties of such an underlying theory in light of recent cosmic microwave background and large-scale structure observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.