Abstract

We compile a list of $14$ independent measurements of large-scale structure growth rate between redshifts $0.067 \leq z \leq 0.8$ and use this to place constraints on model parameters of constant and time-evolving general-relativistic dark energy cosmologies. With the assumption that gravity is well-modeled by general relativity, we discover that growth-rate data provide restrictive cosmological parameter constraints. In combination with type Ia supernova apparent magnitude versus redshift data and Hubble parameter measurements, the growth rate data are consistent with the standard spatially-flat $\Lambda$CDM model, as well as with mildly evolving dark energy density cosmological models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.