Abstract
Teleparallel Gravity offers the possibility of reformulating gravity in terms of torsion by exchanging the Levi-Civita connection with the Weitzenböck connection which describes torsion rather than curvature. Surprisingly, Teleparallel Gravity can be formulated to be equivalent to general relativity for a appropriate setup. Our interest lies in exploring an extension of this theory in which the Lagrangian takes the form of f(T, B) where T and B are two scalars that characterize the equivalency with general relativity. In this work, we explore the possible of reproducing well-known cosmological bouncing scenarios in the flat Friedmann–Lemaître–Robertson–Walker geometry using this approach to gravity. We study the types of gravitational Lagrangians which are capable of reconstructing analytical solutions for symmetric, oscillatory, superbounce, matter bounce, and singular bounce settings. These new cosmologically inspired models may have an effect on gravitational phenomena at other cosmological scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.