Abstract

We propose a mirror model for ordinary and dark matter that assumes a new SU(3) gauge group of transformations, as a natural extension of the Standard Model (SM). A close study of big bang nucleosynthesis, baryon asymmetries, cosmic microwave background bounds, galaxy dynamics, together with the Standard Model assumptions, help us to set a limit on the mass and width of the new gauge boson. The cross section for the elastic scattering of a dark proton by an ordinary proton is estimated and compare to the WIMP--nucleon experimental upper bounds. It is observed that all experimental bounds for the various cross sections can be accommodated consistently within the gauge model. We also suggest a way for direct detection of the new gauge boson via one example of a SM forbidden process: $e^+ + p \rightarrow \mu^+ + X$, where $X = \Lambda$ or $\Lambda_c$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call