Abstract

We present a numerical classification of the spherically symmetric, static solutions to the Einstein--Yang--Mills equations with cosmological constant $\Lambda$. We find three qualitatively different classes of configurations, where the solutions in each class are characterized by the value of $\Lambda$ and the number of nodes, $n$, of the Yang--Mills amplitude. For sufficiently small, positive values of the cosmological constant, $\Lambda < \Llow(n)$, the solutions generalize the Bartnik--McKinnon solitons, which are now surrounded by a cosmological horizon and approach the deSitter geometry in the asymptotic region. For a discrete set of values $\Lambda_{\rm reg}(n) > \Lambda_{\rm crit}(n)$, the solutions are topologically $3$--spheres, the ground state $(n=1)$ being the Einstein Universe. In the intermediate region, that is for $\Llow(n) < \Lambda < \Lhig(n)$, there exists a discrete family of global solutions with horizon and ``finite size''.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.