Abstract

As shown by Parker and Raval, quantum field theory in curved spacetime gives a possible mechanism for explaining the observed recent acceleration of the universe. This mechanism, which differs in its dynamics from quintessence models, causes the universe to make a transition to an accelerating expansion in which the scalar curvature, R, of spacetime remains constant. This transition occurs despite the fact that we set the renormalized cosmological constant to zero. We show that this model agrees very well with the current observed typeIa supernova (SNe-Ia) data. There are no free parameters in this fit, as the relevant observables are determined independently by means of the current cosmic microwave background radiation (CMBR) data. We also give the predicted curves for number count tests and for the ratio, w(z), of the dark energy pressure to its density, as well as for dw(z)/dz versus w(z). These curves differ significantly from those obtained from a cosmological constant, and will be tested by planned future observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.