Abstract

The concept of dark energy (DE) emerged as a result of confirming the accelerated expansion of the universe. Since then, numerous models have been developed to explore the origin and nature of DE. In this study, we investigate several recent cosmological models (Models 1–9) based on the parametrization of the DE equation of state. Our analysis focuses on a homogeneous, isotropic flat universe comprising DE, dark matter (DM), and radiation. We assume the separate conservation of the dark components (DE and DM) and radiation. By employing various parametrizations of [Formula: see text], we derive the corresponding Hubble function [Formula: see text]. To understand the cosmic expansion history of the universe in a model-independent manner, we employ cosmography as an approach. We express important cosmographic parameters such as deceleration, jerk, snap, and lerk parameters in terms of the Hubble rate [Formula: see text] and its derivative up to the fourth order. Additionally, we examine the statefinder parameter and [Formula: see text] diagnostics to distinguish between different types of DE models. Finally, we compare the physical interpretations of these diagnostic parameters with the standard [Formula: see text]CDM model to assess the viability of each model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.