Abstract
We present COSMOGLOBEData Release 1, which implements the first joint analysis of WMAP andPlanckLFI time-ordered data, processed within a single Bayesian end-to-end framework. This framework directly builds on a similar analysis of the LFI measurements by the BEYONDPLANCKcollaboration, and approaches the cosmic microwave background (CMB) analysis challenge through Gibbs sampling of a global posterior distribution, simultaneously accounting for calibration, mapmaking, and component separation. The computational cost of producing one complete WMAP+LFI Gibbs sample is 812 CPU-h, of which 603 CPU-h are spent on WMAP low-level processing; this demonstrates that end-to-end Bayesian analysis of the WMAP data is computationally feasible. We find that our WMAP posterior mean temperature sky maps and CMB temperature power spectrum are largely consistent with the official WMAP9 results. Perhaps the most notable difference is that our CMB dipole amplitude is 3366.2 ± 1.4 μK, which is 11 μK higher than the WMAP9 estimate and 2.5σhigher than BEYONDPLANCK; however, it is in perfect agreement with the HFI-dominatedPlanckPR4 result. In contrast, our WMAP polarization maps differ more notably from the WMAP9 results, and in general exhibit significantly lower large-scale residuals. We attribute this to a better constrained gain and transmission imbalance model. It is particularly noteworthy that theW-band polarization sky map, which was excluded from the official WMAP cosmological analysis, for the first time appears visually consistent with theV-band sky map. Similarly, the long standing discrepancy between the WMAPK-band and LFI 30 GHz maps is finally resolved, and the difference between the two maps appears consistent with instrumental noise at high Galactic latitudes. Relatedly, these updated maps allowed us for the first time to combine WMAP and LFI polarization data into a single coherent model of large-scale polarized synchrotron emission. Still, we identified a few issues that require additional work, including (1) low-level noise modeling; (2) large-scale temperature residuals at the 1–2 μK level; and (3) a strong degeneracy between the absoluteK-band calibration and the dipole of the anomalous microwave emission component. We conclude that leveraging the complementary strengths of WMAP and LFI has allowed the mitigation of both experiments’ weaknesses, and resulted in new state-of-the-art WMAP sky maps. All maps and the associated code are made publicly available through the COSMOGLOBEweb page.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.