Abstract
The containment lifetime of the cosmic radiation is a crucial parameter in the investigation of the cosmic-ray origin and plays an important role in the dynamics of the Galaxy. The separation of the cosmic-ray Be isotopes achieved by two satellite experiments is considered in this paper, and from the measured isotopic ratio between the radioactive 10Be (half-life = 1.5 × 106 yr) and the stable 9Be, it is deduced that the cosmic rays propagate through matter with an average density of 0.24 ± 0.07 atoms cm-3, lower than the traditionally quoted average density in the galactic disk of 1 atom cm-3. This paper reviews the implications of this result for the cosmic-ray age mainly in the context of two models of confinement and propagation: the homogeneous model, normally identified with confinement to the galactic gaseous disk, and a diffusion model in which the cosmic rays extend into a galactic halo. The propagation calculations use: The satellite results and their implications are compared with the information on the cosmic-ray age derived from other cosmic-ray radioactive nuclei and the measured differential energy spectrum of high-energy electrons. It is a major conclusion of this paper that in a homogeneous model the cosmic-ray age is 15(+7, -4) million years, i.e., about a factor 4 longer than early estimates based on the abundances of the light nuclei Li, Be, and B and a nominal interstellar density of 1 atom cm -3. The lifetime is even longer when the satellite results are applied to a diffusion halo model. The deduced traversed matter density, together with other astrophysical considerations, suggest the population of a galactic halo by the cosmic rays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.