Abstract
We consider a principal problem, that of the possible dominating role of self-consistent gravitational interaction in the formation of cosmic structures: voids and their walls in the local Universe. It is in the context of the Hubble tension as a possible indication of the difference in the descriptions of the late (local) and early (global) Universe. The kinetic Vlasov treatment enables us to consider the evolution of gravitating structures where the fundamental role has the modified gravitational potential with a cosmological constant, leading to the prediction of a local flow with a Hubble parameter that is nonidentical to that of the global Hubble flow. The Poisson equation for a potential with an additional repulsive term, including an integral equation formulation, is analyzed, and we predict the appearance of multiply connected two-dimensional gravitating structures and voids in the local Universe. The obvious consequence of the developed mechanism is that the cosmological constant poses a natural scaling for the voids, along with the physical parameters of their local environment, which can be traced in observational surveys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.