Abstract
It is well-known that the global structure of every space-time model for relativistic cosmology is observationally underdetermined. In order to alleviate the severity of this underdetermination, it has been proposed that we adopt the Cosmological Principle because the Principle restricts our attention to a distinguished class of space-time models (spatially homogeneous and isotropic models). I argue that, even assuming the Cosmological Principle, the topology of space remains observationally underdetermined. Nonetheless, I argue that we can muster reasons to prefer various topological properties over others. In particular, I favor the adoption of multiply connected universe models on grounds of (i) simplicity, (ii) Machian considerations, and (iii) explanatory power. We are able to appeal to such grounds because multiply connected topologies open up the possibility of finite universe models (consistent with our best data), which in turn avoid thorny issues concerning the postulation of an actually infinite universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.