Abstract

The desorption due to the energy release of free radicals in the ice mantles of a dust grain is investigated theoretically by calculating the ultraviolet radiation field inside the cloud, the free radical accumulation, the cosmic-ray heating of the grain and then the desorption in this situation starting from the cosmic-ray energy spectra. This model can reproduce the observations of the CO gas abundances and level of depletion in dark clouds such as L977 and IC 5146 with a combination of input parameters which are either constrained by independent observations or have been derived independently from laboratory experiments. We investigate other desorption mechanisms and conclude that they cannot explain the observations. The model also shows that the energy input by the cosmic-ray induced ultraviolet field is almost one order of magnitude larger than the direct energy input by cosmic-ray particles. This strengthens the conclusion that desorption due to the energy release by ultraviolet photon produced radicals dominates over direct cosmic-ray desorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.