Abstract

Galactic winds constitute a primary feedback process in the ecology and evolution of galaxies. They are ubiquitously observed and exhibit a rich phenomenology, whose origin is actively investigated both theoretically and observationally. Cosmic rays have been widely recognized as a possible driving agent of galactic winds, especially in Milky–Way like galaxies. The formation of cosmic ray-driven winds is intimately connected with the microphysics of the cosmic ray transport in galaxies, making it an intrinsically non-linear and multiscale phenomenon. In this complex interplay, the cosmic ray distribution affects the wind launching and, in turns, is shaped by the presence of winds. In this review, we summarize the present knowledge of the physics of cosmic rays involved in the wind formation and of the wind hydrodynamics. We also discuss the theoretical difficulties connected with the study of cosmic ray-driven winds and possible future improvements and directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.