Abstract

In the search for the origin of cosmic rays in our galaxy, various observations are combined as pieces of a complex puzzle to account for the variability of the galactic sources and their local environments, as well as of the properties of the interstellar medium in which cosmic particles propagate. In this puzzle, multi–wavelength observations aim to pinpoint the properties of cosmic–ray sources, based on electromagnetic and neutrino emissions associated with hadronic acceleration processes. The detailed study of the energy spectrum and composition of cosmic rays on Earth, on the other hand, aims to probe the combined and interwoven effects of injection, by acceleration processes, and propagation in the interstellar medium. The observation of arrival directions of cosmic rays on Earth, in addition, potentially provides valuable information on the distribution of the closest and more recent active galactic sources as well as on the properties of the local interstellar magnetic field.The quasi–isotropic distribution of galactic cosmic rays tells the global story of their journey from their sources. The turbulent magnetized galactic medium sufficiently scrambles the arrival directions of cosmic rays on Earth so that their main injection direction is concealed. On the other hand, the observations of a small but significant energy–dependent anisotropy are starting to provide clues on how cosmic rays propagate throughout the local interstellar medium. Anisotropy observations have been used to study diffusion properties of GeV cosmic rays inside the termination shock of the heliosphere and their dependencies on solar cycles. At TeV energy, cosmic rays are sensitive to larger–scale magnetic structures, such as the turbulent boundary between the heliosphere and the local interstellar medium or its elongated tail. At higher energy, it is expected that the interstellar magnetic field within the particle mean free path has major contributions to their arrival directions on Earth.In this workshop, we addressed the potential use of high–energy cosmic–ray anisotropy observations as a probe into the properties of particle transport in astrophysical magnetized plasmas, such as the heliosphere and the local interstellar medium. Along with experts from the fields of astronomy, astrophysics, plasma physics, heliospheric physics and interstellar medium, we discussed how each field can contribute to the understanding of cosmic–ray propagation in our local interstellar magnetic field. This will represent another piece in the search for cosmic–ray sources in the galaxy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call