Abstract

Abstract Low-energy cosmic rays, in particular protons with energies below 1 GeV, are significant drivers of the thermochemistry of molecular clouds. However, these cosmic rays are also greatly impacted by energy losses and magnetic field transport effects in molecular gas. Explaining cosmic-ray ionization rates of 10−16 s−1 or greater in dense gas requires either a high external cosmic-ray flux, or local sources of MeV–GeV cosmic-ray protons. We present a new local source of low-energy cosmic rays in molecular clouds: first-order Fermi acceleration of protons in regions undergoing turbulent reconnection in molecular clouds. We show from energetic-based arguments there is sufficient energy within the magnetohydrodynamic turbulent cascade to produce ionization rates compatible with inferred ionization rates in molecular clouds. As turbulent reconnection is a volume-filling process, the proposed mechanism can produce a near-homogeneous distribution of low-energy cosmic rays within molecular clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.