Abstract

Gravitational lensing of the microwave background by the intervening dark matter mainly arises from large-angle fluctuations in the projected gravitational potential and hence offers a unique opportunity to study the physics of the dark sector at large scales. Studies with surveys that cover greater than a percent of the sky will require techniques that incorporate the curvature of the sky. We lay the groundwork for these studies by deriving the full sky minimum variance quadratic estimators of the lensing potential from the CMB temperature and polarization fields. We also present a general technique for constructing these estimators, with harmonic space convolutions replaced by real space products, that is appropriate for both the full sky limit and the flat sky approximation. This also extends previous treatments to include estimators involving the temperature-polarization cross-correlation and should be useful for next generation experiments in which most of the additional information from polarization comes from this channel due to sensitivity limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.