Abstract

This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer IRAC observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations which would otherwise corrupt our results. The procedures and results for masking bright sources, and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large scale (>~30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power law components. Our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low (>~1 nW m-2 sr-1 at 3-5 micron), and thus consistent with current gamma-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs inhabited by the populations producing these source-subtracted CIB fluctuations, and to isolate the individual fluxes of these populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call