Abstract

Face verification is the task of deciding by analyzing face images, whether a person is who he/she claims to be. This is very challenging due to image variations in lighting, pose, facial expression, and age. The task boils down to computing the distance between two face vectors. As such, appropriate distance metrics are essential for face verification accuracy. In this paper we propose a new method, named the Cosine Similarity Metric Learning (CSML) for learning a distance metric for facial verification. The use of cosine similarity in our method leads to an effective learning algorithm which can improve the generalization ability of any given metric. Our method is tested on the state-of-the-art dataset, the Labeled Faces in the Wild (LFW), and has achieved the highest accuracy in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.