Abstract
Smart grid concept is gaining more and more importance in electric power systems. In near term, electric grids will be more intelligent, interconnected and decentralised. Dealing with a significant number of distributed resources in a smart way frequently requires the use of optimal control techniques, which find the best solution according to a defined objective function. Taking into account all these aspects, the simulation of these types of problems is characterised by having a great number of controlled resources and the use of advanced control techniques. In this context, DIgSILENT PowerFactory provides useful tools to simulate complex systems. On the one hand, the DIgSILENT Programming Language (DPL) can be used for multiple purposes such as automation of simulations, automatic generation of simulation scenarios, analysis of results. On the other hand, the DIgSILENT Simulation Language (DSL) and the digexfun interface allow the implementation of advanced control techniques. Using the digexfun interface, DIgSILENT PowerFactory can send and receive data from other mathematical software APIs such as MATLAB. This chapter presents a co-simulation framework developed to test optimal control methods for root mean square (RMS) simulations on DIgSILENT PowerFactory. As an example, the implementation of a smart charging control for plug-in electric vehicles in electric distribution networks is explained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.