Abstract

The increased penetration of Distributed Energy Resources (DERs) on the distribution network creates local challenges in balancing consumption and generation. To coordinate the roll-out and the operation of DERs, distribution-level energy markets have been proposed, but there are currently few tools for simulating the operation of DERs in these proposed markets. We present a framework which utilizes a grid co- simulation platform (Mosaik) to simulation DER operation, while simulating market clearing operations with a blockchain network (Ethereum). The use of blockchains, an emerging technology for decentralized computing and data storage, allows us to model secure decentralized execution of market clearing functions and payment processes. By unifying simulation of market clearing rules and the physical grid, we are able to ensure that economic incentives are aligned with physical constraints, helping facilitate the development of more effective distributed energy markets. We demonstrate the use of this new simulation platform on a small feeder, for which a market mechanism to incentivize DER integration is explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.