Abstract

AbstractThe 5 September 2022 Mw 6.7 Luding earthquake occurred on the Moxi segment of the highly active Xianshuihe fault in eastern Tibet. Here, we constrain the coseismic slip by jointly inverting the coseismic displacements measured by Global Positioning System, seismometer and Interferometric Synthetic Aperture Radar. Along the Moxi fault, concentrated left‐lateral strike slip extends ∼30 km along the strike above 10 km depth, producing 0.7–1.0 m shallow slip. Clustered aftershocks and slip inversions suggest that the secondary conjugate Mozigou fault may also involve the rupture. Southward rupture propagation is likely arrested by the barrier‐like fault segments of the Xianshuihe fault, characterized by high interseismic coupling (>0.6) and reduced shear stress rate (<1 kPa/yr) due to interactions with surrounding large locked asperities. The distribution of aftershocks is highly correlated with the positive coseismic Coulomb failure stress changes , which bring the adjacent asperities on the Anninghe and Daliangshan faults ∼0.2 MPa closer to failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.