Abstract

Abstract Field observations of slip distribution along large strike‐slip faults and preliminary rupture model simulations reveal a possible correlation between slip gradient near a fault end and the ability of a rupture to jump over a structure stepover in a strike‐slip fault system. We simulate the dynamic rupture process on two parallel strike‐slip faults embedded in an elastic medium to investigate this correlation and compare model‐generated results with field‐measured data. We find that the slip gradients calculated over the final 1 km of a fault have a linear relationship with both the average stress drop on the fault and the largest width of the step that could be jumped by a propagating rupture. Our dynamic coulomb stress analyses show that the average stress drop on the first fault, which is proportional to the slip gradient in the final 1 km, determines the positive coulomb stress region at the end of the first fault, which in turn determines the largest jumpable step width. A larger stress drop results in a larger positive coulomb stress region around the first fault end, which allows the rupture to jump a wider stepover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.