Abstract

Interferometric synthetic aperture radar (InSAR) decorrelation that creates great challenges to phase unwrapping has been a critical issue for mapping large earthquake deformation. Some studies have proposed a “remove-and-return model” solution to tackle this problem, but it has not been fully validated yet, and therefore has rarely been applied to real earthquake scenarios. In this study, we use the 2023 Mw 7.8 and 7.6 earthquake doublet in Turkey and Syria as a case example to develop an iterative modeling method for InSAR-based coseismic mapping. We first derive surface deformation fields using Sentinel-1 offset tracking and Sentinel-2 optical image correlation, and invert them for an initial coseismic slip model, based on which we simulate InSAR coseismic phase measurements. We then remove the simulated phase from the actual Sentinel-1 phase and conduct unwrapping. The simulated phase is added back to the unwrapped phase to produce the final phase measurements. Comparing to the commonly-used unwrapping method, our proposed approach can significantly improve coherence and reduce phase gradients, enabling accurate InSAR measurements. Combining InSAR, offset tracking and optical image correlation, we implement a joint inversion to obtain an optimal coseismic slip model. Our model shows that slip on the Çardak Fault is concentrated on a ~100 km segment; to both ends, slip suddenly diminished. On the contrary, rupture on the East Anatolian Fault Zone propagated much longer as its geometry is fairly smooth. The iterative coseismic modeling method is proven efficient and can be easily applied to other continental earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.