Abstract
On 6 February 2023, the MW 7.8 Pazarcik and the MW 7.5 Elbistan earthquakes occurred in southeastern Turkey, close to the Syrian border, causing many deaths and a great deal of property destruction. The Pazarcik earthquake mainly damaged the East Anatolian Fault Zone (EAFZ). The Elbistan earthquake mainly damaged the Cardak fault (CF) and the Doğanşehir fault (DF). In this study, Sentinel-1A ascending (ASC) and descending (DES) orbit image data and pixel offset tracking (POT) were used to derive surface deformation fields in the range and azimuth directions induced by the Pazarcik and Elbistan earthquakes (hereinafter referred to as the Turkey double earthquakes). Utilizing GPS coordinate sequence data, we computed the three-dimensional surface deformation resulting from the Turkey double earthquakes. The surface deformation InSAR and GPS results were combined to invert the coseismic slip distribution of the EAFZ, CF, and DF using a layered earth model. The results show that the coseismic ruptures of the Turkey double earthquakes were dominated by left-lateral strike-slips. The maximum slip was 7.76 m on the EAFZ and about 8.2 m on the CF. Both the earthquakes ruptured the surface. The Coulomb failure stress (CFS) was computed based on the fault slip distribution and the geometric parameters of all the active faults within 300 km of the MW 7.8 Pazarcik earthquake’s epicenter. The CFS change resulting from the Pazarcik earthquake suggests that the subsequent Elbistan earthquake was triggered by the Pazarcik earthquake. The Antakya fault experienced an increase in CFS of 8.4 bars during this double-earthquake event. Therefore, the MW 6.3 Uzunbağ earthquake on 20 February 2023 was jointly influenced by the Turkey double earthquakes. Through stress analysis of all the active faults within 300 km of the MW 7.8 Pazarcik earthquake’s epicenter, the Ecemis segment, Camliyayla fault, Aadag fault, Ayvali fault, and Pula segment were all found to be under stress loading. Particularly, the Ayvali fault and Pula segment exhibited conspicuous stress loading, signaling a higher risk of future seismic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.