Abstract

Solidified frictional melts, or pseudotachylytes, remain the only unambiguous indicator of seismic slip in the geological record. However, pseudotachylytes form at >5 km depth, and there are many rock types in which they do not form at all. We performed low- to high-velocity rock friction experiments designed to impose realistic coseismic slip pulses on calcite fault gouges, and report that localized dynamic recrystallization may be an easy-to-recognize microstructural indicator of seismic slip in shallow, otherwise brittle fault zones. Calcite gouges with starting grain size −1 , and total displacements between 1 and 4 m. At coseismic slip velocities ≥0.1 m s −1 , the gouges were cut by reflective principal slip surfaces lined by polygonal grains 2 + CaO. The recrystallized calcite aggregates resemble those found along the principal slip surface of the Garam thrust, South Korea, exhumed from

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call