Abstract

On 8th August 2017, a magnitude Ms 7.0 earthquake struck the County of Jiuzhaigou, in Sichuan Province, China. It was the third Ms ≥ 7.0 earthquake in the Longmenshan area in the last decade, after the 2008 Ms 8.0 Wenchuan earthquake and the 2013 Ms 7.0 Lushan earthquake. The event did not produce any evident surface rupture but triggered significant mass wasting. Based on a large set of pre- and post-earthquake high-resolution satellite images (SPOT-5, Gaofen-1 and Gaofen-2) as well as on 0.2-m-resolution UAV photographs, a polygon-based interpretation of the coseismic landslides was carried out. In total, 1883 landslides were identified, covering an area of 8.11 km2, with an estimated total volume in the order of 25–30 × 106 m3. The total landslide area was lower than that produced by other earthquakes of similar magnitude with strike-slip motion, possibly because of the limited surface rupture. The spatial distribution of the landslides was correlated statistically to a number of seismic, terrain and geological factors, to evaluate the landslide susceptibility at regional scale and to identify the most typical characteristics of the coseismic failures. The landslides, mainly small-scale rockfalls and rock/debris slides, occurred mostly along two NE-SW-oriented valleys near the epicentre. Comparatively, high landslide density was found at locations where the landform evolves from upper, broad valleys to lower, deep-cut gorges. The spatial distribution of the coseismic landslides did not seem correlated to the location of any known active faults. On the contrary, it revealed that a previously-unknown blind fault segment—which is possibly the north-western extension of the Huya fault—is the plausible seismogenic fault. This finding is consistent with what hypothesised on the basis of field observations and ground displacements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call