Abstract
Damage patterns caused by the 1989 Loma Prieta earthquake along the southwestern margin of the Santa Clara Valley, California, form three zones that coincide with mapped and inferred traces of range-front thrust faults northeast of the San Andreas fault. Damage in these zones was largely contractional, consistent with past displacement associated with these faults. The damage zones coincide with gravity and aeromagnetic anomalies; modeling of the anomalies defines a southwest-dipping thrust fault that places the Franciscan Complex over Cenozoic sedimentary rocks to minimum depths of 2 km. Diffuse Loma Prieta earthquake aftershocks encompass the downward projection of this modeled thrust to depths of 9 km. Our results indicate that in this region the potential for concentrated damage arising from either primary deformation along the thrust faults themselves or by sympathetic motion triggered by earthquakes on the San Andreas fault may be higher than previously recognized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.