Abstract

Alternating beds of peat and mud in sediment sequences on the south-central Alaskan coast record coseismic and inter-seismic relative land and sea-level movements caused by repeated great earthquakes on the Alaska–Aleutian subduction zone. During the AD 1964 Mw=9.2 earthquake, tidal marshes and wetlands around upper Cook Inlet experienced up to 2 m of subsidence, burying peat-forming communities with intertidal mud. Here we use quantitative analyses of fossil diatoms within peat–mud couplets to reconstruct land/sea-level changes for the 1964 and five earlier great earthquakes during the past 3300 years. In contrast to geodetic observations that are limited to the present post-seismic phase, we quantify varying spatial patterns of uplift and subsidence through complete earthquake cycles. Relative land uplift characterises most of the inter-seismic phase of each cycle at our sites, whereas each great earthquake was preceded by a short period of pre-seismic relative land subsidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.