Abstract
The emerging trend towards moving from monolithic applications to microservices has raised new performance challenges in cloud computing environments. Compared with traditional monolithic applications, the microservices are lightweight, fine-grained, and must be executed in a shorter time. Efficient scaling approaches are required to ensure microservices’ system performance under diverse workloads with strict Quality of Service (QoS) requirements and optimize resource provisioning. To solve this problem, we investigate the trade-offs between the dominant scaling techniques, including horizontal scaling, vertical scaling, and brownout in terms of execution cost and response time. We first present a prediction algorithm based on gradient recurrent units to accurately predict workloads assisting in scaling to achieve efficient scaling. Further, we propose a multi-faceted scaling approach using reinforcement learning called CoScal to learn the scaling techniques efficiently. The proposed CoScal approach takes full advantage of data-driven decisions and improves the system performance in terms of high communication cost and delay. We validate our proposed solution by implementing a containerized microservice prototype system and evaluated with two microservice applications. The extensive experiments demonstrate that CoScal reduces response time by 19%-29% and decreases the connection time of services by 16% when compared with the state-of-the-art scaling techniques for Sock Shop application. CoScal can also improve the number of successful transactions with 6%-10% for Stan’s Robot Shop application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Network and Service Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.